Ms. Terkper's Digital Classroom

Unit 7: Absolute Value & Reciprocal Functions (Math 20-1)

Absolute value functions & equations; transformations; reciprocal functions, domains & asymptotes; applications.

\(y=a|x-h|+k\) Piecewise Reflections & Stretches Reciprocal \(y=\frac{1}{f(x)}\) Asymptotes Restrictions

What You Should Be Able To Do

  • Model and graph \(y=a|x-h|+k\); identify vertex, axis, intercepts, domain/range; write piecewise form.
  • Solve absolute value equations \(|ax+b|=c\) and interpret solutions.
  • Graph and analyze reciprocal functions \(y=\dfrac{1}{f(x)}\): domain restrictions, vertical/horizontal asymptotes, intercepts.
  • Describe transformations and solve applied problems using absolute value or reciprocal models.
Progress autosaves to this device.

Video Library

Interactive Tools

Absolute Value Explorer \(y=a|x-h|+k\)

Solve \(|ax+b|=c\)

Hyperbola Explorer \(y=\dfrac{A}{x-h}+k\)

Reciprocal of \(f(x)\): plot \(f(x)\) and \(\frac{1}{f(x)}\)

Unit 7 Quizzes

Downloadable Review

Download PDF

Quick Practice Scratchpad

Try: graph \(y=2|x-3|-5\); solve \(|3x-7|=11\); graph \(y=\frac{5}{x+2}-1\); sketch \(y=\frac{1}{x^2-4}\) with asymptotes.