Math 10C — Number Unit

Practice Test

(Prime Factors \cdot Rational/Irrational \cdot Number Systems \cdot Radicals & Mixed Radicals)

Instructions. Show work in the space beside each question. Calculators permitted unless instructed otherwise. For **Numerical Response**, print your answer as an integer in the boxes from left to right.

rom left to right.	
Multiple Choice (1–4)	
Withiple Choice (1 4)	
1) Which of the following numbers is not a prime factor of 12 320?	
A. 7	
B. 11	
C. 5	
D. 13	
2) How many numbers in the list 5, 7, 11, 13 are prime factors of 2772?	
A. 1	
B. 2	
C. 3	
D. 4	
3) The lowest common multiple of 21 and 70 can be written as a product of prime factors form $a \times b \times c \times d$ where a, b, c, d are primes with $a < b < c < d$. The value of c is	s in the
A. 2	
B. 3	
C. 5	
D. 7	
4) If a number is irrational , its decimal representation must be	
A. terminating and repeating	

B. terminating and non-repeatingC. non-terminating and repeating

D. non-terminating and non-repeating

Numerical Response (5–7)

Record your answer in the boxes.

- 5) The greatest common factor of 6510 and 8190 is
- 6) The sum of the distinct prime factors of 45 045 is
- 7) When $4\sqrt[3]{5}$ is written as an **entire radical**, the value of the **radicand** is

Multiple Choice (8–16)

8) Which of the following numbers are **rational**?

I.
$$1.2020020002...$$
 II. $\sqrt[3]{\frac{27}{64}}$ III. $\sqrt{0.09}$ IV. $0.\overline{142857}$

- A. III only
- B. II, III and IV only
- C. I, II and III only
- D. I, II, III and IV

9) The rational number 2.375 can be written as an improper fraction $\frac{c}{d}$ in simplest form. The value of c is

- A. 10
- B. 15
- C. 19
- D. 23

10) Consider the numbers $\sqrt{19}$, $\sqrt[3]{98}$, $\sqrt{67}$, $\sqrt[5]{201}$. The largest of these numbers is

- A. $\sqrt{19}$
- B. $\sqrt[3]{98}$
- C. $\sqrt{67}$
- D. $\sqrt[5]{201}$

11) In the radical $\sqrt[5]{12\,000}$, the **index** and **radicand** are, respectively,

- A. 5 and 12000
- B. 12 and 5
- C. 5 and 12
- D. 12000 and 5

12) Which statements about radicals are true (assume all variables are non-negative)?

I.
$$\sqrt{48} = 4\sqrt{3}$$

II.
$$\sqrt[3]{54} = 3\sqrt[3]{2}$$

I.
$$\sqrt{48} = 4\sqrt{3}$$
 II. $\sqrt[3]{54} = 3\sqrt[3]{2}$ III. $\sqrt{a} \cdot \sqrt{b} = \sqrt{a+b}$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 13) Three students rewrote $\sqrt{4050}$ in another form.

Student I: $405\sqrt{10}$ Student II: $45\sqrt{2}$ Student III: $9\sqrt{50}$ Which response is **correct**?

- A. only Student II
- B. Students I and II only
- C. all three students
- D. some other combination
- 14) A circle has area 120π cm². The **exact** length of its radius is
 - A. 10
 - B. $\sqrt{30}$
 - C. $2\sqrt{30}$
 - D. $4\sqrt{30}$
- 15) Which equations are always true for $x, y, z \ge 0$?

I.
$$4\sqrt{3x} = \sqrt{48x}$$
 II. $\sqrt{\frac{5y}{9}} = \frac{\sqrt{5}}{3}\sqrt{y}$ III. $\sqrt[3]{16z} = 2\sqrt[3]{2z}$

- A. I only
- B. I and II only
- C. II and III only
- D. I, II and III
- 16) Which is **equivalent** to $\frac{3}{\sqrt{2}}$ (written with a rational denominator)?
 - A. $\frac{3\sqrt{2}}{4}$
 - B. $\frac{\sqrt{18}}{2}$
 - $C. \ \frac{3\sqrt{2}}{2}$
 - D. $\sqrt{\frac{3}{2}}$

Written Response — 5 marks

A small card game uses points based on the real number system. Each card shows one number. A card's score is the **sum** of points for every set it belongs to:

Natural : 4 pts Whole : 5 Integer : 6 Rational : 3 Irrational : 10 Non-real : 1

- 1. The number on a card is 0. Explain which sets 0 belongs to and compute its total points. (2 marks)
- 2. Three students draw three cards each. Who wins (highest total points)? Show how you classified each number. (3 marks)
 - Student A: $\frac{3}{4}$, $\sqrt{16}$, 0
 - Student B: -3, $\sqrt{15}$, π
 - Student C: $-\sqrt{36}$, $\sqrt{\frac{1}{9}}$, 5

Answer Key

- 1) D 9) C
- 2) B 10) C
- 3) C 11) A
- 4) D 12) A
- 5) 210 | 13) A
- 6) 039 14) C
- 7) 320 15) D
- 8) B 16) C

Notes/Justification

- 5) gcd(6510, 8190) = 210.
- 6) $45,045 = 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$; sum of distinct primes = 3 + 5 + 7 + 11 + 13 = 39.
- 7) $4\sqrt[3]{5} = \sqrt[3]{4^3 \cdot 5} = \sqrt[3]{320}$.
- 8) II = $\frac{3}{4}$, III = 0.3, IV repeating decimal \Rightarrow rational; I is non-repeating \Rightarrow irrational.
- 12) I true (48 = 16 · 3), II true (54 = 27 · 2), III false; $\sqrt{a}\sqrt{b} = \sqrt{ab}$.
- 13) $\sqrt{4050} = \sqrt{81 \cdot 50} = 9\sqrt{50} = 45\sqrt{2}$; only Student II is simplified.
- 14) $\pi r^2 = 120\pi \Rightarrow r = \sqrt{120} = 2\sqrt{30}$.
- 15) All three identities hold for $x, y, z \ge 0$.
- 16) $\frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$.